
COpy _ __
AD

AD-E402 076

Technical Report ARFSD-TR-90008

(0,

n A NEURAL NETWORK OBJECT RECOGNITION SYSTEM
N

F. P. Kuhl
Project Engineer

ARDEC

A. P. Reeves
R. J. Prokop

Cornell University N

.,., t, .. ,,1990

July 1990

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND

ENGINEERING CENTER

Fire Support Armaments Center

uS ARMY Picatinny Arsenal, New Jersey
ARMAMENT MUNITONS

ICHEMICAL COMMAND
ARMAMENT RDE CENTER

Approved for public release; distribution unlimited.

J 105o

The views, opinions, and/or findings contained in
this report are those of the author(s) and should
not be construed as an official Department of the
Army position, policy, or decision, unless so
designated by other documentation.

The citation in this report of the names of
commercial firms or commercially available
products or services does not constitute official
endorsement by or approval of the U.S.
Government.

Destroy this report when no longer needed by any
method that will prevent disclosure of contents or
reconstruction of the document. Do not return to
the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release, distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER 5. MONITORING ORGANIZATION REPORT NUMBER
Technical Report ARFSD-TR-90098

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONTORIN " ORGANIZATION

ARDEC, FSAC (cont) SMCAR-FSF-RC U.S. Army Reseail Office
6c. ADDRESS (CITY, STATE, AND ZIP CODE) 7b. ADDRESS (CITY, STATE, AND ZIP CODE)

Fire Control Division P.O. Box 12211
Picatinny Arsenal, NJ 07806-5000 (cont) Research Triangle Park, NC 27709-2211

8e. NAME OF FUNDING;SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

STINFO Br SMCAR-IMI-I

8c. ADDRESS (CITY, STATE, AND ZIP CODE) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT NO. TASK NO. WORK UNIT

Picatinny Arsenal, NJ 07806-5000 ELEMENT NO. ACCESSION NO.

11. TITLE (INCLUDE SECURITY CLASSIFICATION)

A NEURAL NETWORK OBJECT RECOGNITION SYSTEM

12. PERSONAL AUTHOR(S)
F. P. Kuhl, Project Engineer. ARDEC and A. P. Reeves and R. J. Prokop. Cornell Univers.'

13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (YEAR, MONTH. DAY)115. PAGE COUNT
Final I FROMOCt_ TOF eb._O J July 1990 I 59

16. SUPPLEMENTARY NOTATION
Task was performed under a Scientific Services Agreement issued by Battelle, Research Triangle Park Office 20(

/ Park Drive, P.O. Box 12297, Research Triangle Park, NC 27709
17. COSATI CODES 18. SUBJECT TERMS (CONTINUE ON REVERSE IF NECESSARY AND IDENTIFY BY BLOCK NUMbR'

FIELD GROUP SUB-GROUP Neural networks Object recognition Target identitication

19. ABSTRACT (CONTINUE ON REVERSE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)

A system involving neural networks has been developed to identify objects as an instance of a prespecified set of
object classes. This system is useful for exploring different neural network configurations. There are three ra!'
computation phases of a model based object recognition system: segmentation, feature extraction, and object
classification. This report focuses on the object classification stage. For segmentation, a neural network based
segmenter developed by M. Tenorio can be used Other, more conventional segmentation schemes are also
available. Neural networks for feature extraction are at an early stage of development; other more conventional
techniques have proved to be very fast and effective. Several conventional techniques are available with the
current system. Neural network based feature exiraction may be added at a later date The classification stags
consists of a very flexible neural network simulator which may be configured for a wide range of different network
concepts. The system is based on the VISIX computer vision software environment. It provides an interaclive
experimentation facility that may be used on a large numb r of UNIX -'-sed workstations. The system has been
tested with a number of simple object recognition tasks. Q"- .)
20. DISTRIBUTIONAVAILABILITY OF ABSTRACT 21. ABTRACT SECURITY Ct ASSI CATION

1 UNCLASSIFIEDUNLIMITED [] SAME AS RPT. DTIC USERS 1U UNCLASSIFILD

22s. NAME OF RESPONSIBLE INDIVIDUAL 72b. TELVPHONE (INCLUDE AREA COO., 22c. OFFICE SYMBOL

S I. HAZENDARI T01) 724-3316 SMCAR-IMI-I

DD FORM 1473, 84 MAR
UNCLASSIFI1 "

SECURITY CLASSIFICATIO. .F THIS PAGE

6a and 6b. (cont)

Cornell University
School of Electrical Engineering
410 Phillips Hall, Ithaca, NY 14853

A 00859 o n F or

IDIIC TAB

cr xced 0

jial lity-~ Codes

SA,3 1 ,-Ia
o

Vp c

CONTENTS

Page

Introduction 1

Neural Network Models 1
Application of Neural Networks to Object Recognition 2
Overview 3

Neural Network Classifier 3

Input Encoding 4
Neuron Model 6
Network Topology 6
Training Algorithms 7
Output Encoding 9
Comparison with Traditional Classifiers 9

Object Recognition Testbed 10

Image Segmentation 10
Input Encoding 10
Neural Network Classification 10
Process and File Structure 11

Testbed User's Guide 11

Installation 11
Directory Structure 12
Startup and Execution 13
Example Object Recognition Experiment 14
Neural Network Environment Variations 16

References 33

Appendixes

A Neural Network Object Recognition Modules 35

B General VISIX Modules 43

Distribution List 55

FIGURES

Page

1 Neural network object identification system 21

2 Process and file structure for neural network object identification 22

3 Sunview screen configuration 23

4 Listing of training output 24

5 Segmented input image used for training (default) 25

6 Labeled input image used for training (default) 26

7 Listing of test output 27

8 Classification key image 29

9 Labeled test image (scene) 30

10 Labeled test image (scene2) 31

11 Labeled test image (fulrak) 32

ii

INTRODUCTION

The use of networks of simple neuron cells or the connectionist approach to
computing has received much attention recently due to advances in the network teach-
ing techniques. The basic concept of the neural network approach is that a comput-
ation function may be learned from example; that is by showing the network examples
of the behavior of the desired function it will learn to respond to the desired behavior for
new inputs.

The focus of this work is on the identification of an object's type from a set of
image features. In the simplest form, this requires matching an input parameter vector
(feature representation) to the closest vector that the network has been taught. New
back projection learning algorithms have recently been been developed that can teach
a network to implement an arbitrary complex decision surface in hyperspace; providing
that a network has a sufficient number of neurons. These are two main research
issues: how to present the vectors to the network and to encode the desired responses,
and how to improve the learning algorithm. The problems with existing learning algo-
rithms are: (1) convergence is not guaranteed even with sufficient neurons; (2) learning
is very slow, typically thousands of iterations of the input vectors may be required; and
(3) only an analytic surface can be taught whereas a probabilistic behavior may be
more appropriate.

Neural Network Models

A taxonomy of neural models has been presented by Lippmann (ref 1). The
taxonomy initially divides nets between those with binary inputs versus those with
continuous inputs. The next level of distinction is based on whether the network is
trained with our without supervision. Below this, networks are distinguished by their
topology. A neural network model may therefore be characterized by three properties;
the computational element, the network topology, and the training algorithm.

The computational elements of a neural network mode! are nonlinear analog
modules sometimes referred to as neurons. A neuron is a multi-input single output
device. The output is a nonlinear function of a weighted sum of the inputs. The non-
linear function is set for a given class of neural elements.

Various network topology strategies have been proposed that use combinations of
single and multilayer as well as feed forward and feedback connections to achieve the
desired results. For example, it has been established that a network of three neuron
layers is capable of realizing an arbitrarily complex decision surface in hyperspace.
However there is currently no general method for predicting how many neurons are
required for a given task.

The training algorithm determines the initial values for the weights in all the
neurons and then specifies how the weights should be updated during training to
achieve the desired output. The main problem with current neural nets is that there isn't
any good, robust training algorithms to reliably adjust to weights.

Application of Neural Networks to Object Recognition

The model based object recognition paradigm identifies an unknown object as a
member of a set of known objects. Three fundamental stages that may be identified in
most model based recognition systems are image preprocessing (segmentation), object
feature extraction (representation), and matching (classification).

Model-based techniques utilize abstract representations to characterize objects.
These representations are defined by measurable object features extracted from seg-
mented object imagery and any a priori knowledge available. These features may be
considered to define an n-dimensional feature space. The feature representations of an
object then map to points in this feature space. A classification scheme is used to
partition the feature space to decision regions based on training information and to
identify unknown input vectors based on these regions.

The conventional classification schemes used for vision feature spaces are statis-
tically based decision surfaces. For standard classification tasks, where class distribu-
tions may be modeled by Gaussian distributions, statistical decision techniques have
been used. For complex decision surfaces the k-nearest neighbors technique has been
found to be useful.

Neural network models have great potential for use in object recognition due to the
number of parallel computations and decisions required for classification. The potential
advantages of the neural network classification approach are:

Automatic adaptive behavior--It is possible that a neural network can be
"taught" to modify its behavior if the task changes in time or new teaching information is
acquired.

No formal model requirement--Most conventional techniques reqUire that a
strict model computation be established before an algorithm is developed. It is possible
for a neural network to operate with very little formal structure.

Fast operation--It may be possible to use parallel hardware and a smaller
number of operations to solve a problem with a neural network rather than a conven-
tional algorithm.

2

It is important to note that none of the above advantages is assured even when a
neural network is carefully engineered to an application. Furthermore, it is quite possi-
ble that neural networks will require more computation and will give inferior results to
well established algorithms. If there is a good direct algorithm for solving a task, then
the direct implementation of the algorithm is probably far superior to a neural network
approach.

It has been shown that neural nets have applications in each stage of the object
recognition process. For example, neural network models have been developed that
can perform low-level image processing functions such as convolution integrals,
Gaussian-filtering, and edge-enhancement (ref 2) that may be used in the preprocess-
ing stage. More importantly, however, is the ability of neural networks to perform image
segmentation. Such a neural network model has been developed by M. F. Tenorio (ref
3). Additionally, neural network models are being developed to perform invariant
transformations such as the Hough transform (ref 2) that may be used for feature
extraction. However, fast and robust feature extraction using neural networks is still at
an early stage of development that requires further investigation.

Overview

This first section of the report serves as an introduction to neural networks and
illustrates their application to model based object recognition. The second section is a
presentation of the theory behind a neural net classifier developed for object recogni-
tion. Input encoding techniques are presented along with network topologies and
training techniques. The third section describes the framework for a neural network
object recognition testbed developed to explore different neural network configurations.
Section four is a user's guide to installation and operation of the testbed. An example
experiment, along with variations is presented. Appendix A is a collection of Unix style
manual pages describing the neural network testbed modules. Appendix B is a selec-
tion of manual pages describing modules of the VISIX (ref 4) image processing system
that are relevant to the use of the testbed.

NEURAL NETWORK CLASSIFIER

A neural network classifier has been developed for use in a model based object
recognition system. The network is intended to receive inputs in the form of object
feature vectors. The network will be trained with a representative set of feature vectors.
The class of each of the training vectors is known a priori so that the training may be
supervised. When a vector of unknown class is input, after the net has been trained, the
output of the network is a binary vector that is an one-in-n indication of an object's class.

3

Input Encoding

Network input encoding is based on a feature vector extracted from an object
image. Since an effective neural network model for object feature extraction is yet to be
developed, more traditional schemes for object feature extraction were chosen. A
desirable property of many existing object feature techniques is their invariance to
changes in object to sensor distance, position, and orientation. In other words, it would
be desirable for the abstract representation of a given object to be viewed from a given
aspect to be the same regardless of the distance from the object to the sensor, the
position of the object within the sensor's field of view, and the orientation of the sensor
with respect to the object (referred to as size, position, in-plane rotation invariance,
respectively). Several techniques have been presented that meet these invariance
criteria. These include the techniques of standard moments (ref 5) and normalized
Fourier descriptors (ref 6). These abstract object representations are more efficient
than object images since they typically require approximately only 10 to 20 real num-
bers to represent an object. Additionally, they have well defined transform properties
that allow simple object manipulation in the feature domain. A short description of each
technique is presented.

Normalized or "standard" moments (ref 7) are based calculation of the two-
dimensional Cartesian moments, mpq, of the image, f(x,y), given by

0000I

mpq = f fJ xPyqf(xy) dx dy p,q = 0,1,2 ...

Moments represent object features such as area, center of mass (COM), and principal
axes. Moments are desirable features because they have well defined linear transform
properties that allow simple object manipulation in the moment domain. For example,
an object represented by the moment set, Mpq, may be scaled by a factor, ot, using the
following transform

m apq = mpql3

Similarly, an object may be translated by (t and P in the x and y directions respectively,
using the following transform

p q

r=0 s=O

4

And finally, an objf ct may be rotated by an angle 0 using the following transform

mpq = (p) (q))q-s (COS 0)q r.s mp~q rb ,s
r=O s=O

Invariance of the moment values is achieved through normalization of the object fea-
tures in the moment domain using the transformation described above. Specifically, the
normalized moment values are given in table 1.

Table 1. Moment normalization value-

Standard moment Normalization

moo = 1 Object area set to 1

M10 = 0 Object translated such

M01 = 0 that COM is at origin

Mil = 0 Major principal axis

is aligned with x-axis

M20 = M 02 Object area is differentially

scaled to make aspect ratio 1

Calculation of standard moments has actually been implemented in two different wav
in the system. The moments may be calculated in a conventional manner from object
silhouette and grey-level imagery. Optionally, a "fast" moment calculation is availab'.,
that determines silhouette moment values based on the object boundary only.

The technique of normalized Fourier ciescriptors (ref 6) characterizes an object
based on the contour of its silhouette. Consider a closed contour, representi,,g an
object boundary, in the complex plane. If it is traced once in the countercockwist
direction with constant velocity, v, a complex function, z(t) with parameter t is obtained.
For consistency, v may be chosen so that the time required to traverse the contour is
always 2n. Traversing the contour continuously yields a periodic function which may be
expanded in a convergent Fourier series. A Fourier doscriptor, F, of the contour is the
complex Fourier series expansion of z(t).

2[f z(t) e In dt

0

In practice, the contour is taken from a digitized image; therefore, z(t) is not avail-
able as a continuous function. If z(k) is a uniformly sampled version of z(t) of dimension
N, the discrete Fourier transform gives us the N lowest frequency coefficients, F(O) . . .

F(N-1), directly.

Invariance of Fourier descriptors is also accomplished through normalization. The
frequency domain transformations that affect size, position, and orientation of the
contour follow directly from the properties of the DFT. Size normalization is accom-
plished by dividing all F(n) by I F(1) I. Translation normalization is accomplished by
setting F(O) = 0. Finally, in-plane rotation and starting point position are normalized by
changing the phase of the coefficients such that F(1) and F(k), the next largest coeffi-
cient, have a phase of zero.

Either of these techniques may be used to create invariant object feature vectors
as input encodings for the neural network. Previous research, however, has shown the
moment technique to !e more effective than Fourier descriptors in the presence of
sensor noise.

Neuron Model

The simplest neuron has N inputs, xn, each with a variable weight, w n. Each
neuron has a single output, y, that is a nonlinear function of the sum of the weighted
inputs and a threshold, 0. The equation for this neuron is then

y fj(Wn xn - 0)
n=O

where f is a nonlinear activation function that causes y to have a value typically be-
tween [-1,1] or [0,1]. Some example activation functions are hard limiters, thresholds,
and sigmoid functions.

Network Topology

There are two aspects to the network topology: the number of layers and the
strategy used to interconnect layers. The neural network classifier uses a feedforward
design that is configurable in a single or multilayer connection as specified by the user.
A typical interconnection strategy is to connect each neuron of a given layer to all
outputs of the previous layer. This strategy is the one that has been used; however, the
network simulator has the capability of implementing any intralayer Ptrategy.

6

The number of layers directly effects the type of decision regions that may be
formed by the network. Therefore, a configuration may be selected that is appropriate
for the distribution of classes in the feature space. For example, a single layer, feed-
forward network made up of the neurons described above with hard limiting activation
functions, may be trained to create a decision region that is a half-space represented by
a hyperplane in feature space. A two-layer network is implemented as a combination of
decisions made by a set of single layer networks. Consequently, a two-layer network
can create decision regions that are defined by the intersection of a set of half-spaces in
fEature space. The resultant decision spaces for a two-layer network are convey open
or closed regions. Finally, a three layer, feedforward network is implemented as a
combination of decision made by two-layer networks. A three-layer network, therefore,
is all that is required to create arbitrary convex or concave closed decision regions in
feature space.

Training Algorithms

The algorithm used for training in the neural network classifier is based on the
delta rule. The delta rule is a supervised learning procedure that relies on pairs of input
and desired output encodings to update weight values. This technique additionally
requires a continuous differentiable activation function. The procedure for training the
network using the delta rule follows.

Initially, all the weights are set to a small random value. Then, for each training
input, the network first produces a computed output vector. This computed output is
then compared to the desired output vector to determine the error. If the computed
output and desired output are equal (zero error), then no changes are made to the
weights. If the error is not zero, then the weights are updated to reduce the difference
between the computed and desired output.

Given a single layer, fully connected network with N inputs and M neurons (out-
puts), the input vector, xn, the computed output vector, Ym' and the desired (training)

output vector, tm, the rule for updating the input weights, wnm, is

m tm Ym

A~m= 1"1 (m Xn

wnm =w nm + Anm

where wnm is the updated weight and q is a positive gain factor chosen to be less than
1.0. This rule is applied for all pairs of input and desired output vectors repeatedly until
Anm is zero for all weights and all input vectors.

7

The delta rule is derived from finding a set of weights that minir.ize the error
between calculated and desired output using a gradient descent method operating on
the error surface in weight space. This derivation is given in reference 8.

The delta rule may be extended to multilayered feedforward networks using a
technique known as back propagation. This technique first computes an output vector,

Ym' by propagating the input, xn, completely through the multilayer network. The next

phase is a backward pass through the network during which the weights at each layer
are updated. This requires the determination if error vectors, 6, at each layer of the
net. The weights at each layer are then updated according to the delta rule

A nm = 1 8](m Xn

wnm wnm +Anm

where xn is an input at the current layer (an output of the previous layer). Initially, 6 is

computed for the final (output) layer of the network. The equation for 6 at the output
layer in a multilayered network is given by

6m = (tm - y,)f'(net m)

where f" is the derivative of the activation function and netm is given by

net = YWnm Xnm n

where n is over all the inputs to the neuron m. This 6 is then used to update the weights
in the final layer of the net. Next, the error for the preceding layer is computed. The
error for this layer, 6', may be computed recursively from the previously computed error,
6, using

8m = f'(netm) E 6n Wnm
n

where n is over all nodes in the previous layer. This error, 6', is used to update the
weights at this layer of the net. This process is repeated for each preceding layer until
the first layer is reached. A complete derivation of this procedure is given in reference
8.

The value of T1, the learning rate, must be chosen to provide a fast convergence
without leading to oscillation. A momentum term may be added to the delta rule to help
prevent oscillations. Weights are updated using a momentum factor, a, by the following
rule

8

Wnm Wnm + l8m Xn + O(Wnm -Wnm)

The effect of alpha is to filter out high-frequency variations in the error surface during
gradient descent. These high-frequency variations cause oscillations when larger
weight steps (TI) are taken.

Output Encoding

The neural network classifier employs a one-in-N output encoding technique that
uses one neuron per class in the output layer of the net. The network is trained so that
only one output neuron fires for a given class. The output vector is therefore a binary
vector with each bit position representing a different class. The output vector is there-
fore a binary vector with each bit position representing a different class.

Comparison with Traditional Classifiers

The classifier previously described may be referred to as a Back-Propagation
Classifier (ref 9). This may be compared to conventional classifiers that are typically
probabilistic (Bayesian) or exemplar (k-nearest neighbor).

Probabilistic classifiers assume a priori class distributions in feature space. These
distributions are estimated using supervised training data assuming all the training data
are available simultaneously. These classifiers provide optimal performance when
sufficient training data are available to arrive at an accurate estimation of the class
distribution or at least an estimate that is consistent with the distribution of the test data.

Exemplar classifiers perform classification based on the identity of the training
vector that is nearest to the test vector. The k-nearest neighbors may be found by
determining the k minimum Euclidean distances between the test vector and the set of
training vectors in feature space. These classifiers require a minimum training time but
require significant memory and computation time to perform actual classification.

In general, back-propagation classifiers are implemented using single or multi-
layer neural networks with sigmoidal activation functions. They use supervised,
gradient-descent training techniques that minimize the error between the calculated and
desired output (as described above). These classifiers are characterized by long
training times that increase with the number of layers and, in turn, the complexity of the
decision regions formed. Additionally, no method exists for determining the correct
number of nodes required in the intermediate layers of multilayer networks to form
required complex decision regions. However, once a network is trained, actual clas-
sification may be performed very quickly by simply propagating the input vector forward
through the net.

9

OBJECT RECOGNITION TESTBED

An object recognition system using neural network techniques has been
developed. A modular approach has been taken to allow the system to be used as a
testbed for performance comparison of neural network and conventional techniques
throughout the recognition process. The task of this system is the recognition of un-
known objects from silhouette and grey-level imagery based on similarity with imagery
of known objects. Such a system may be partitioned into three stages: image seg-
mentation, input encoding, and neural network classification (fig. 1).

Image Segmentation

The preprocessing of the input imagery should result in a set of distinct object
images that will be used to generate feature vectors (object representations) for training
(known objects) or classification (unknown objects). As mentioned previously, this
stage may be accomplished using a neural network. Such a network has been devel-
oped which uses a single layer feedback network scheme (ref 3). Alternatively, the user
may utilize any segmentation algorithm desired for performance comparison.

Input Encoding

Input encoding is accomplished using object feature extraction techniques to
create input vectors for the training and testing the network. There are currently two
major feature extraction techniques available in the system, normalized (standard)
moments and normalized Fourier descriptors. These features may be normalized with
respect to scale, translation, and in-plane rotation of the object. This normalization is
configurable. In the test performed here normalization has been made with respect to
all the above parameters. The modularity of the system also allows the user to specify
and install custom input encoding techniques.

Neural Network Classification

The classification stage is implemented with a user configurable neural network
that allows the user to specify such network parameters as:

Number of layers in the network

Number of neurons per layer

Number of inputs per neuron

Network interconnection topology

Neuron type

10

Output encoding

Training strategy

These parameters are easily changed to perform performance comparison of different
neural network techniques on the same recognition task.

Process and File Structure

A flow graph of the processes used and the files created during training and
testing of the neural network object recognition system is shown in figure 2.

To train the system, an input image is first segmented using a user specified
segmentation algorithm. A set of image segments is then extracted with one object per
image. The operator may then interactively assign the class identifiers to each of the
segmented objects to supervise the training process. A feature vector is generated for
each labeled (operator classified) segmented object. This procedure is repeated for all
input images. The set of feature vectors of all the training object images is then used to
train the neural network. The desired output of the neural net for each training input is
automatically determined by the class assigned to each object by the operator.

To test the system, the operator follows the same basic procedure as for training.
In this case, however, the operator does not have to interactively label the test objects.
The system will automatically number the test object sequentially if desired. The set of
feature vectors of all the test object images is then used to test the neural network.
Each test input vector is applied to the network to produce a classified output encoding.
To evaluate the classification results, the user may request the system to display the
original test imagery with the determined classes overlayed on the objects.

TESTBED USER'S GUIDE

Installation

The user should first change directory to the location for the neural network. For
purposes of illustration we will refer to this directory as NNET. Load the tape into this
directory using the command

tar -xvbf 126/dev/rstO

11

Directory Structure

After the tape has been loaded the user should see the following subdirec-
tories in the NNET directory (there may be additional files/dirs):

images/ man/ nbin/ nnet/ nn-setup prep/ vbin/

The contents and use of each of these directories is as follows:

images--location for the input imagery used to train and test the network

man--location of the neural network module manual pages

nbin--Iocation of the neural network module executables

nnet--location of the neural network configuration files

pep--directory used by the neural network modules for the creation of
intermediate data files

vbin--location of the visix executables

nn-setup--shell script that is used to set the environment variables (see
below)

Paths to Executables

In order to run the neural net modules, the user must have the following
directories in his path:

NNET/nbin NNET/vbin

Environment Variables

The neutral network modules use several environment variables to determine
the system configuration. These variables are automatically set using a special file
called nn-setup.

The specific variables set within nn-setup and their meaning are:

NNDISPLAY--specifies the frame buffer type (COLORIMONOI-
TEK401 0)

NNDISPROC--specifies the image display procedure (disdl)

12

NNIMPATH--specifies the path to image directory (NNET/images)

NNNETPATH--specifies the path to net configuration directory
(NNET.'net)

NNPREPATH--specifies the path to preprocessing directory

(NNET/prep)

NNCONFIG--specifies the root name of configuration file (net1)

NNCLASSES--specifies the number of classes for one-in-n
classification(3)

NNSEGMENT--shell script to run image segmentation program
(nnseg)

The initial values of these variables are shown in parenthesis. They may
be changed to suit the users needs by editing nnsetup.

!i! IMPROTANT !!

In order for the values set in nnsetup to take effect upon execution of any of the
nnet modules, the user must have a copy of nnsetup in the current working directory.

Startup and Execution

Many of the network modules need to display imagery during their execution.
Therefore, the network modules should only be run from within a graphical window
environment such as Sunview or X.

On Sun workstations, special Sunview startup and root menu files are provided in
the files

NNET/.sunview NNET/.rootmenu

The use of these files is optional. They only provide an organized window configuration
for the neural network programs. If Sunview is invoked using the startup files provided,
the screen will be configured as shown in figure 3.

13

Neural Network Modules

There are three modules typically invoked directly by the user to perform
neural network experiments:

netrun--interactive script that invokes several sub-modules ot test and
train the neural net

netpic--module used to display labeled versions of the unknown imagery
after classification

show--module that allows the user to view the original input imagery as
well as the intermediate data and image files created by the network

It is usually not necessary for the user to invoke any of the neural network

system submodules, (NNET/nbin/nn_. . .), directly.

Example Object Recognition Experiment

To illustrate the use of the neural network object recognition system, a simple
recognition experiment is performed.

In this experiment it is assumed that there are images containing known objects in
the file:

NNET/images/default.im

and several unknown images whose contents we wish to classify:

NNET/images/fulrak.im...scene.im...scene2.im

In addition, input coding will be performed using standard moments. The use of a
particular input encoding requires a specific network configuration. An example neural
network configuration file for standard moments is given in the file:

NNET/nnet/netl .mts.con

Note that "neti" is the identifier for this configuration as specified by the NNCON-
FIG environment variable set in nnsetup. The input encoding is designated by the
intermediate extension ".mts". The ".con" extension indicates that this is a nnet con-
figuration file. This file will be used to configure the neural network for the purposes of
this experiment.

14

The experiment is performed in two basic stages:

1. Train the neural network using default.im

2. Test the neural network with fulrak.im, scene.im scene2.im

Training the Net

The command to train the neural network for this experiment is

netrun verb fvec=mts default.im

A listing of the output is shown in figure 4.

Initially, netrun displays the neural network system parameters as well as the
contents of the current configuration file as a sanity check (fig. 4).

Next, netrun describes each stage of preprocessing (fig. 4) by indicating
which intermediate file is being created. At one point, netrun will display the input
image with a default set of labels (fig.5). The user is asked to relabel the objects by
specifying a list of classes based on the order of the labels in the default image. The
results of this labeling is shown in figure 6.

Netrun finally creates an input vector and trains the net (fig. 4). Upon conver-
gence, netrun displays the number of iterations required.

Testing the Net

The command for testing the neural network in this experiment is

netrun test verb fvec=mts fulrak.im scene.im scene2.im

The listing of the output is shown in figure 7.

Again, netrun displays the neural network system parameters as well as the
contents of the current configuration file as a sanity check (fig. 7)

Next, preprocessing is performed as for training, with the exception that, in
this case, the user is not prompted for object labels (fig. 7).

Finally, netrun creates an input vector and applies it to the trained net. A
tabular listing is displayed showing the unknown object number and the determined
(found) class (fig.7). The user may now request a graphical depiction of the clas-
sification results with the command

15

netpic mts

This will first display an image "key" to associate class numbers with known objects
(fig.8). Next, each test (unknown) input image is displayed with the determined class
numbers for each of its segments (figs. 9 through 11).

Once the network has been trained, the user may run the test stage on any
unknown images. Additionally, the show command may be used to view the contents of
any of the intermediate files.

Neural Network Environment Variations

The neural network system has been designed to allow the user to easily vary the
experiment to facilitate performance comparison between different techniques at vari-
ous stages of the recognition procedure.

Changing Input Encoding

The same experiment could be performed as described above using normal-
ized Fourier discriptors instead of moments by simply changing the occurrances of mts
in the example to fd. Specifically,

netrun verb fvec=fd default.im

netrun test verb fvec=fd fulrak.im scene.im scene2.im

netpic fd

Note that the system will now configure itself based on the file

NNET/nnet/netl .fd.con

The input encodings currently supported are:

mom--fast silhouette moments generated from image boundary

mts--standard silhouette and grey moments

fd--normalized Fourier descriptors

vec--a "quick" vector

Note that the show command may be used to display the vectors of any of
these encodings.

16

Changing the Network Configuration File

The user may configure the neural network by creating a file

"config_name"."fvec".con

Note that the configuration file is usually appropriate only for a specific type of
input encoding. As an example, this is the contents of the configuration file
"net1 .mts.con":

UU.VISIX: <This is a comment area>

1 The program version (network type)
1 The number of networks (layers)
11 The number of inputs to each neuron
3 The number of neurons
1 The interconnectin pattern, 1=Full
1 The neuron type: 1 -threshold, 2-rap, 3=sigmoid

This file specifies a single layer, fully connected, 3 neuron network with 11
inputs (the input vector length). After parameters in this file are set to the desired
values, this new configuration may be used by editing nnsetup to

setenv NNCONFIG "config name"

Changing the Segmentation Algorithm

Another variation might be to use an alternative segmentation algorithm. This
is accomplished by changing the value of NNSEGMENT in nn-setup. Currently, a
second shell script using an alternative segmentation algorithm developed by M. F.
Tenorio is available. This module is called nn ten3. To install this module, edit
nnsetup and set

setenv NNSEGMENT nn ten3

The user may now rerun the experiment as above to see the effect of the new
segmentation program.

In general, to create a new segmentation module, the user specifies a shell
script that takes a root file name as input. The input image to the user's segmentation
script will be in

NNET/images/"root".im

17

The new segmentation script should call the user's algorithm and create the

segmented image in

N NET/prep/"root".seg

To install this new script, edit nnsetup and set

setenv NNSEGMENT "user's script name"

Object Classification Using the Vicom

A late addition to the neural network environment is the ability to test and train
the network based on images captured by the Vicom system. To use the current Vicom
image, the user need only enter the name VICOM as one of the inputs to netrun. For
example, once the net has been trained with the appropriate objects, the objects cur-
rently in the vicom field of view may be classified by using the command

netrun test verb fvec=mts VICOM

This will cause the system to automatically grab the current vicom image and
store it in a file called

NNET/images/vicpic.im

This file will then be applies to the neural network as any other image. Note
that the user must rename this file if it is to be saved for future use since this "vicpic.im"
is overwritten each time a new image is grabbed.

Short-Cutting Image Preprocessing

The neural network object recognition system has been designed to allow the
user to skip any of the image preprocessing steps if the appropriate intermediate data
already exists. For example, once an experiment has been executed, input encoding
files (moment ferature vectors) now exist for the input imagery. Therefore, it is not
necessary for the user to go through the entire image preprocessing stage again to run
the experiment. Specifically, when the following experiment is run

netrun test verb fvec-mts fulrak.im

the system creates a the input encoding file

fulrak. mts

18

Now, if the user wishes to re-execute the test, use

netrun test verb fvec=mts fulrak.mts

to prevent regeneration of the moment feature vectors.

19

Image Segmentation

Image Segmentation SegmentedSet (a) threshold Image

Set - - - eSet
(b) neural network

(M.F.Tenorio)

Feature Vector Generation (input encoding)

Feature Feature
Vector Vector

Segmented Generation Normalization
Image (a) moments (a) Translation
Set (b) grey moments (b) Rotation

(c) Fourier descriptors (c) Scale
(d) fast vectors # f elements

Neural Network Object Indentification

Neural Network Result
Classifier Analysis

(a) # of Layers Individual responses
(b) # of Neurons/Layer
W(c) # of inputs/neuron
(d) interconnection topology Confusion matrices
(e) # Neuron type
(f) output encoding

(g) training strategy Labeled Images

Figure 1. Neural network object identification system

21

F input image (im)I

Segmentation

Segmented image (seg) I

Connected comp
extraction Bitplane image generation

Set of image segments (ims)
Bit version of image (it)
(for segment dis play)

Interactive object labeling
(optional when testing

Labeled set of segments (lab)

Feature vector generation
and normalization

]Normalized feature vectors
(h~pr)Repeat for each image

ICompositeo feture vector setI

Neural network Classification

Neural network responses

=Result Analysis

Figure 2. Process and file structure for neural network object identification

22

C31

-- 0

U:

............
H -j

2D

C~0)

1 1 11 It L
116- 411 aC a

1 0 0 00

a 0 U I- I - .3. . a

a - -.0 Ic .. OL I c II I I 0 I
A6 o t a 04- c 'a'I 666 6

~ a -..c.21

1 . I c 0 C. .. ~ 1. 240) 1
." *Y " C c Ul-'19 .

Ima 2. 1 ww -L U 6
1 0 6 L. -. 1 0 63 g
.4- 1 *- l a oz, -O I.

1V U I i .m '01 w 'I I6 a g a

EU I at 1 . N& omm 6o .0 4-L 0

16 ~ ~ ~ ~ ~ 1 66 .0YLO 0. L
1m 20a . 06 "UC 6. .0 6

IIt

1 6L O U 4 1-0 - 1

aa Sl 00-0 * ~ .023

Display Type SUNGREY

Number of Classes 3

Neural Network Configuration netl.mts

Neural Network last TRAINED with default

Segmentation script nn_seg

UU.VISIX: Standard Moments order 4

1 The program version(network type)

1 The number of networks (layers)

11 The number of inputs to each neuron

3 The number of neurons
1 The interconnction pattern, l=Full

1 The neuron type: 1=threshold, 2=ramp, 3=sigmoid

--- PREPROCESSING input to create network input vector

Input default.im
Creating a segmented byte image default.seg
Creating a bitplane version default.bit
Creating an image set default.ims
Labeling the images in the set default.ims

[--- see figure 5 (ed.) ---]

-- Enter a list of class identifiers
-- for each numbered segment in sequence.
-- Terminate the list with a return.
-- Enter list : 3 2 1 3
-- Is this labeling correct? (y/n) : y

[--- see figure 6 (ed.) ---]

Creating moment feature vector file default.mts

Creating the network input data input.mts

--- TRAINING the Neural Network

Training data : default

Neural Network Log :

UU.VISIX:Neural Network Log File

687 - the number of iterations for convergence.

Figure 4. Listing of training output

24

Figure 5. Segmented input image used for training (default)

25

Figure 6. Labeled input image used for training (default)

26

Display Type SUNGREY

Number of Classes

Neural Network Configuration netl.mts

Neural Network last TRAINED with default

Segmentation script nn_seg

uU.VISIX: Standard Moments order 4

1 The program version(network type)

1 The number of networks (layers)

11 The number of inputs to each neuron

3 The number of neurons

1 The interconnction pattern, 1=Full

1 The neuron type; 1
=threshold, 2=ramp, 3 sigmoid

--- PREPROCESSING input to create network input vector

Input scene.im
Creating a segmented byte image scene.seg
Creating a bitplane version scene.bit
Creating an image set scene.ims
Creating moment feature vector file scene.mts

Input scene2.im
Creating a segmented byte image scene2.seg
Creating a bitplane version scene2.bit
Creating an image set scene2.ims
Creating moment feature vector file scene2.mts

Input fulrak.im
Creating a segmented byte image fulrak.seg
Creating a bitplane version fulrak.bit
Creating an image set fulrak.ims
Creating moment feature vector file fulrak.mts

Creating the network input data input.mts

Figure 7. Listing of test output

27

TESTING the Neural Network

Object Class Found Misfire

1 1 1 0
2 2 1 0
3 3 1 0
4 4 1 0
5 5 3 0
6 1 1 0
7 2 2 0
8 3 2 0
9 4 1 0

10 5 1 0
11 6 3 0
12 1 1 0
13 2 2 0
14 3 2 0
15 4 2 0
16 5 3 0

Classification Complete.

To display labeled images enter > netpic mts

[. see figures 8 through 11 (ed.)

Figure 7. (cont)

28

t 2 3

Figure 8. Classification key image

29

Figure 9. Labeled test image (scene)

30

Figure 10. Labeled test image (scene2)

31

Figure 11. Labeled test image (fulrak)

32

REFERENCES

1. Lippmann, R. P., "An Introduction to Computing with Neural Nets," IEEE ASSP
Magazine, pp 4-21, April 1987.

2. Roth, M. W., "Survey of Neural Network Technology for Automatic Target Recog-
nition," IEEE Transactions on Neural Networks, vol 1, no. 1, pp 28-43, March
1990.

3. Tenorio, M. F., "Serial and Parallel Image Segmentation Based on MAP Estima-
tion Techniques," Final Report D.O. 0779 C.N. DAAL03-86-D-0001, Armament
RD&E Center, Picatinny Arsenal, NJ, August 1988.

4. Reves, A. P. and Associates, "VISIX 2.0 Users Manual," VISIX: A Computer
Vision System for UNIX based Computer Systems, July 1989.

5. Reeves, A. P., Prokop, R. J., and Andrews, S. E., "Three Dimensional Shape
Analysis Using Moments and Fourier Descriptors," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol 10, no. 6, pp 937-943, November 1988.

6. Wallace, T. P. and Wintz, P.A., "An Efficient Three-Dimensional Aircraft Recogni-
tion Algorithm Using Normalized Fourier Descriptors," Computer Graphics and
Image Processing, vol 13, pp 99-126, 1980.

7. Reeves, A. P. and Rostampour, A., "Shame Analysis of Segmented Objects Using
Moments," IEEE Computer Society Conference on Pattern Recognition and
Image Processing, pp 171-174, Augusg 1981.

8. Rkumelhart, D. E., Hinton, G. E., and Williams, R. J., "Learning Internal Repre-
sentations by Error Propagation," Parallel Distributed Computing, pp 318-362, MIT
Press, 1986.

9. Lippmann, R. P., "Pattern Classification Using Neural Networks," IEEE Com-
munications Magazine, pp 47-64, November 1989.

33

APPENDIX A

NEURAL NETWORK OBJECT RECOGNITION MODULES

35

NETRUN (1) VISIX Users Manual NETRUN (1)

NAME
netrun - run and test a neural network

SYNOPSIS
netrun (test] [time] [check] (verb] (config] [fvec=<type>] input-list

DESCRIPTION
Netrun trains or tests a neural network classifier with segments extracted from a set of images. If a list
of images is not specified on the command line, netrun prompts the user for a list of image file names.
A composite feature vector of all the segments from all the files is generated and applied to a neural
network.

The full procedure for processing an image, name.im, into a neural network input vector file, name ftec
along with intermediate files, is as follows :

1. partition the image into segments (name.seg). using the utility nn seg.
2. generate an image set of these segments (name.ims) using the utility nn..ims.

and generete a bitplane version of the image (namebit) using the utility nnbit.
3. generate a feature vector file (name.mom, namefd, name.mts, or name.vec)

containing one vector per segment
using the utility nn mom, nnfd, nnmts, or nnvec respectively.

4. in training mode, prompt the user to supply labels for each segment
and update (name.ims) and (name.<fvec>) with this information using the utility nnlab.

If more than one image is specified, each is processed (steps 1-4) in turn.

5. All feature vector files are then concatenated to create a single neural network
input file, input.<fvec>.

6. The input file is applied to nnet(1) for for training or testing.
7. In testing mode. the output of nnet is directed through for a tabular listing of anet(1)

classification results.
8. At this point, in testing mode, a graphical representation of classification

results may be generated using the utility netpic
<fvec>

Image processing steps can be skipped by specifiying an intermediate filename extension with the
filename. For example, to skip the segmentation stage, specify the file by the name name.seg rather
than name.im. To skip the interactive labeling stage use the extension lab. This is useful when it is
desired to compare the results of different feature vector formulations.

OPTIONS
test Test the network instead of train it. The result for each segment will be output.

verb Set the verbose mode. All proceesing stages will be preceeded with a messge to the terminal.

time Print the time required for each processing stage.

check The commands that would be executed are printed to the terminal. No data is actually pro-
cessed.

config Display the current system parameters and network configuration. No data is processed.

fvec=<type>
The feature vector type to be used may be specified. Current types are

mom - fast moment generation
(silhouette moments from chain code)

mts - slower moment generation
(silhouette and grey moments)

fd - Fourier descriptors

37

NETRUN (1) VISIX Users Manual NETRUN (1)

vec - quick vector

ENVIRONMENT
Netrun is a large shell script that calls the utilities described in nnutils(1). The location of these utili-
ties must be in the user's path.

Netrun requires three special subdirectories for its operation. The actual names for these directories are
specified using environment variables. (see below)

The first is the "image" subdirectory. This directory is the location of the input imagery.

The second is the "preprocessing" subdirectory. Netnet uses this directory to create the intermediate
files described above.

The third is the "net" subdirectory. This directory is the location of the neural network configuration
and data files. A network configuration is specified in a file <name>.<fvec>.con. The configuration
name and feature vector type to use in a given experiment may be specified using the environment vari-
ables described below.

The environment variables used by the neural network to determine the system configuration are

NNIMPATH
specifies the path to "image" subdirectory

NNNETPATH
specifies the path to "net" subdirectory

NNPREPATH
specifies the path to "preprocessing" subdirectory

NNCLASSES
the number of classes for one-in-n classification

NNDISPLAY
the system frame buffer type (SUNGREY I SUNMONO I TEK4010).

NNCONFIG
the root name of the neural network configuration file

NNSEGMENT
the shell script to run image segmentation program

NN DISPROC
the image display procedure

These environment variables are set in the file nnsetup. This file is "source"d each time netrun is exe-
cuted.

EXAMPLE
As an example, we may train a neutral network using moment feature vectors (mom), generated from
the images trl.im tr2.im tr3.im. We first need an appropriate configuration file in the "net" directory.
For example, if we name the configuration netx then the file netx.mom.con might contain the following
information

UU.VISIX: Config file for moments (11 elements)

1 The program version(network type)
I The number of networks (layers)
11 The number of inputs to each neuron
3 The number of neurons
1 The interconnction pattern, l=Full
1 The neuron type: 1=threshold, 2=ramp, 3=sigmoid

38

NETRUN(I) VISIX Users Manual NETRUN(1)

Note that NN CONFIG should be set to "netx"

To actually train the net from the images trl.im tr2.im tr3.im enter
netrun verb fvec=mom trl.im tr2.im tr3.im

The system will prompt the user for labels for each segment found within the images.

Now, to test the network, i.e. to classify an unknown set of objects in the images unkl.irn unk2.im
unk3.im unk4.im, enter

nnet test verb fvec=nom unkl.im unk2.im
When the classification is finished, the user may enter

nelpic mom
to display labeled versions of the input imagery.

AUTHOR
Anthony P. Reeves R.J. Prokop

SEE ALSO
nnutils(1) nnet(1) show(l)

39

NNUTILS (1) VISIX Users Manual NNUTILS (1)

NAME
nnseg, nnims, nnlab, nn bit, nn fd, nn mom, nnvec, nn_mts, nnpic - Neural network modules

SYNOPSIS
nn_... <filename>

DESCRIPTION
These modules are shell files that perform a processing function on images stored in the image and
preprocesging directories specified by the environment variables NNIMFATH and NNPREPATH They
may be easily modified to accomodate different experiment designs. See netrun(l) for an example of
their usage in an experiment. (netrun is a shell file which calls the above commands to do the actual
work.) Most of thses modules are simple one-line shell files.

The <filename> argument specifies the root of a file to be processed. Pertinent file extensions are
automatically generated by the selected module.

MODULES
nn_seg Generate a segmented image. The input file is name.im the output file is name.seg. This shell

is provided as a simple image segmenter. A custom image segmentation program may be
used by incorporating it in a shell script that has the same input and output files as nnseg.
This new shell script may be installed in the system with the NNSEGMENT environment
variable.

nn_ims Generate an image set with each subimage having one of the segments. The input file is
name.seg the output file is name.ims.

nnbit Generate a bitplane version of the segmented image. The input file is name.seg the output file
is name.bit.

nnJfd Generate Fourier descriptor feature vectors, one for each segment. The input file is name.ims
the output file is namefd.

nn_mom Generate moment feature vectors for each segment of a segmented image. The input file is
name.seg the output file is name.mom.

nn_mis Generate moment feature vectors from an image set. The input file is name.seg the output file
is name.mts.

nn_vec Generate quick vector feature vectors; one for each segment. The input file is name.seg the
output file is name.vec.

nnlab Assign classes (or labels) interactively to an image or vector set. The input file is Wme.ims
or name~fvec the output file is name.ims or name.fvec respectively, with class id's updated as
specified. (fvec is one of mom, mts, fd, or vec)

nn.pic Generates a graphical output of classification results. A "key" image is first generated to
show the object classes. Each segmented test input image is then displayed with the segments
labeled by class.

AUTHOR
Anthony P. Reeves

SEE ALSO
netrun(l)

40

SHOW(l) VISIX Users Manual SHOW(1)

NAME
show - Display Neural network files

SYNOPSIS
show <filename> [a] [g] [<num>]

DESCRIPTION
Show is a general purpose display program for showing the contents of data files for the neural network
simulation package. The <filename> argument should be complete with an extension. The original
input image files are all located in the neural network "image" directory. The remaining data files arc
all located in the neural network "preprocessing" directory.

Show examines the environment variable NN DISPLAY to determine the actual display type and
NN IMPATH and NNPREPATH to locate the data files.

OPTIONS
a Display an anotated image with all segments marked.

g For feature vector formats; plot the feature vector as a graph.

<num> For some feature vector files num specifies a specific image or feature vector from a set.

FILE EXTENSIONS
.im Grey level input image.

.seg A segmented image.

.bit A bitplane version of the segemented image.

.mom Moment feature vector,

.vec The fast vector feature vectors.

fd Fourier Descriptor feature vectors.

If no extension is specified the default is to display the grey level image (.im).

AUTHOR
Anthony P. Reeves

SEE ALSO
netrun(1)

41

APPENDIX B

GENERAL VISIX MODULES

43

NNET(1) VISIX Users Manual NNET(1)

NAME
nnet - neural network simulator

SYNOPSIS
nnet if=infile cf=cffile net=netfile [tf=tfile] [ol=logfile] [of=resfile] [-1] [-c] [-dl [-i] [-r] [in=num itera-
tions] [g=gain] [wl=lower bound of initial weight] [wu=upper bound of initial weight] [m=momentum
gain] [rs=random seed] [maxi=max iteration]

DESCRIPTION
Nnet simulates a neural network. It may be used both to train a network and to test a network with new
inputs. The configuration of the network is specified in cffile. The contents of the neural network are
stored in netfile.

OPTIONS
-I Set the network to operate in the learning mode. Input feature vectors read from infile are

presented to the network which is trained to repond with the value of a corresponding vector
in the training file file. The sequence of training vectors is repeatedly presented to the net-
work until the correct output is obtained for all inputs.

ol=<logfile>
Statistics gathered during each iteration are stored in logfile.

-c The -c flag specifies the classification mode. A response is generated for each input vector;
responses are recorded in resfile.

-d The -d flag is originally designed for debugging, but you can use it to examine the contents of
the net work. This function is recommended to be used in conjuction with the in option. The
net work contents will be displayed in the following format:

Layer #0 (input layer):
input #1 input #2 input #3

neuron #1I I I I 1 I
neuron #21 1I I I I
neuron #31 I I I I I

* I I i I I
* I I I I I I
* I I I I I I

Layer #1 (next layer):

Layer #n (output layer):

-i This flag was originally used for debugging also. You can use it as a progress report. It
shows the difference between the actual output and the desired output of the net work at every
in= number of iterations.

-r This flag tells the program to READ in an existing net work (net=netfile). You must also pro-
vide the CORRECT corresponding configuration file (cf=cffile).

in=<int> This number is an integer specifying the number of iteration between each report from the
debugging flags -d and -i. Default value is 100 iterations.

g=<float>
This number is the GAIN factor used in the learning mode. Default value is 0.75

wI=<float>
This number specifies the lower bound of the random initial weights. Default value is 0.5.

wu=<float>

45

NNET(1) VISIX Users Manual NNET(1)

This number specifies the upper bound of the random initial weights. Default value is 1.5.

m=<float>
This number is the gain factor for the momentum Default value is 0.75.

rs=<int> This integer specifies a seed for the random number generator used to generate the initial
weights.

maxi=<int>
This integer specifies a maximum number of iterations during training. Default value is 100.

FORMATS
The neural network configuration is specified in a VISIX text file with the following format:

UU.VISIX:Neural Network Specification File

1 The program version (network type)
1 The number of networks (layers)
10 The number of inputs to each neuron
20 The number of neurons.
1 The interconnection pattern, l=full
2 The neuron type: l=threshold, 2=ramp 3=sigmoid
[The above four items are repeated for each network layer]

The neural network is stored as a real "image" matrix with each row representing the contents of a sin-
gle neuron. For multiple level networks an image set format is used with one image representing each
network layer.

The input file type depends upon the type of the network. Currently a real vector format (or real image
where each row represents a vector) is supported. The training file, tfile consists of a set of byte vectors
(or a byte image) where each non-zero byte represents a 1 response and zero represents a zero response.
One vector (row corresponds to a single input vector (row). The results file is in the dame format as
the training file. The logfile is a VISIX text file.

ADDITIONAL FEATURES
This simulator provides additional options when interrupted during training. An interrupt is signaled by
<CNTRL-C>.

Here are the options:
1) Stop right now and save the current net.
2) Look at the current net.
3) Continue learning.
4) Stop and don't save anything.

This simulator will also display the content of a netfile when neither the -c nor the -1 flag is specified.
But be sure the cffile (configuration file) is compatible with the netfile.

AUTHOR
??, 2/89

46

SEGGEN (1) VISIX Users Manual SEGGEN (1)

NAME
seggen - generates a set of segment vectors from an image

SYNOPSIS
seggen [-m] [or-n] [-c] [-g] f-v] [-s] [-] [-c4] [-r] [min=val] [if=][<filerame>] [of=<ofile>] [ig=<igfile>]

DESCRIPTION
Seggen extracts all segments from an image (or an image set) and generates feature vectors for each of
them. Segments are identified by being a connected set of nonzero pixels. An alternate format is that
each segment consists of pixels having a single grey level value. The input image may be format I or
2. By default, the output is a set of images, each of which contains one segment with 255 indicating a
segment pixel and 0 indicating the background. All image-segment images are the same size which is
large enough to contain the largest segment.

OPTIONS
-s Image-segment images are made just large enough to contain their own segment.

-1 Each image segment will have a unique grey level value (label).

-c4 The boundary will be traced using a 4-connected rule. The default is that the boundary is 8-
connected.

-c The output is a chain code feature vector;, the location of the start of the chain code relative to
the original image is recorded in the subheader.

-v The output is a xy format feature vector, the location of the start of the vector relative to the
original image is recorded in the subheader.

-m The output is a moment feature vector; the location of the origin of the moments relative to
the original image is recorded in the each subheader. Moments are generated by tracing the
boundary of a segment assuming that the segment has no holes.

or=<n> compute moments up to order n. The default and maximum order is 6.

-g Image segments are output but the actual grey level values of the segments are maintained.

-r Update the header to indicate the number of image segments detected. This is done after all
segments have been output and may cause a delay if the output is piped.

min= value
Set a minimum size for the area of the segments. If a segment covers an area less than value
then it is not output.

ig=<igfilename>
Image segments are output but the grey levels are extracted from a second (byte) input image
specified by igfilename.

AUTHOR
BUGS

The ig=, or=-, -v, -g, and -c4 options have not yet been implemented.
The -s flag makes all segments that same size as the input image.

47

MRAW(lf) VISIX Users Manual MRAW(lf)

NAME
mraw - generate raw silhouette and grey level moments from an image

SYNOPSIS
mraw if=imagefile of=momentfile or=order th=threshold Ix= y= z=] [-im]

DESCRIPTION
Mraw generates raw silhouette and grey level moment vectors from a pds image. The output is a two
channel vector in pds feature vector format. Vector elements are output as 4 byte real data. Channel I
is the raw silhouette moment vector and channel 2 is the grey level moment vector.

The parameters x, y, and z specifiy the original objects rotation. They are written to the subheader of
each channel and are not used for computation. The defaults for x, y, and z are zero. If the -im param-
eter is specified then class id. and object rotation parameters are read from the image header description
section.

The parameter thresh specifies the grey level threshold. If thresh is positive, all pixels greater than or
equal to this value are considered part of the segment. If thresh is negative, all pixels having a value
less than or equal to the absolute value of thresh are considered to be part of the segment. The default
is th=l .

The parameter order specifies the order of the moments. A moment set of order n will have
(n+l)*(n+2)/2 elements in its feature vector. If no order is specified, the default is or=6.

It should be noted that the grey moment vector variance is written to the subheader in sub(l). This
value is used by the "norm" when performing grey moment normalization.

This program can process sequencies of images that are in image set format.

AUTHOR
R. J. Prokop

SEE ALSO
mnorm(If), pds(5), vecpds(3f)

48

MNORM(IF) VISIX Users Manual MNORM(1F)

NAME
mnorm - normalize raw moments

SYNOPSIS
mnorm [inputfiles & parameters ...]

DESCRIPTION
Mnorm is a general moment normalization program. Input data may be silhouette and/or boundary
and/or grey-level (range) moment vectors in PDS feature vector format. Mnorm also accepts combined
silhouette-boundary or combined silhouette-grey-level data files.

Mnorm performs several different normalizations. If input data is "raw", mnorm may be used to per-
form size, translation, and rotation normalization on a moment set. For grey-level data, one of three
methods of size normalization may be selected. In addition, mnorm can compute the rotation augmenta-
tion and/or aspect normalization and/or Legendre normalization of the moment set.

Rotation augmentation causes new vectors to be generated when an ambiguous rotation angle is encoun-
tered. The new vectors correspond to rotations of +90 and/or -90 and/or 180 degrees. The borderline
thresholds for ambiguous rotations may be specified.

Aspect normalization converts the ellipsoid of inertia of the object to a circle while keeping the area set
to 1. The aspect ratio is assigned to the m20 element in the normalized feature vector.

The following is a list of parameters for specifying the input file(s) and selecting the normalization
type.

sf=sfile Inputfile "sfile" is a single channel PDS feature vector file containing silhouette data.

bf=bfile Inputfile "bfile" is a single channel PDS feature vector file containing boundary data.

gf=gfile Inputfile "gfile" is a single channel PDS feature vector file containing grey-level (range) data.

sg=sgfile
Inputfile "sgfile" is a two channel PDS feature vector file with silhouette data in channel I and
grey-level (range) data in channel 2.

sb=sbfile
Inputfile "sbfile" is a two channel PDS feature vector file with silhouette data in channel 1 and
boundary data in channel 2.

-raw Performs size, translation, and rotation normalization on raw input data. The result is a set of
"standard" moments.

-rot Selects rotation augmentation. This normalization is only performed on silhouette data.

-asp Selects aspect normalization.

-leg Selects Legendre normalization.

-stat Writes rotation augmentation statistics to standard output.

-par Normally, mnorm will compute the normalization parameters used for size, translation and
rotation normalization of raw grey-level data. The parameter "-par" causes mnorm to use the
computed translation and rotation normalization parameters from raw silhouette data to normal-
ize raw grey-level data.

gr=n Selects type of grey-level scale normalization. For gr=l, the standard deviation of the visible
surface is used to scale the z dimension so that the normalized standard deviation is 1. The
mean of the normalized moments is set to 1. For gr=2, the perceived volume is scaled using
the normalization factor that sets the perceived area of the corresponding raw silhouette
moments to 1. The mean of the normalized moments is set to 0. For gr=3, normalization is the
same as gr=2 except that the mean of the normalized moments is set to 1.

th2O=r th30=-r

49

MNORM(IF) VISIX Users Manual MNORM(lF)

These parameters set the thresholds for rotation augmentation. Th20 sets the threshold on the
difference between m20 and m02 before a +90 or -90 degree rotated augment vector is gen-
erated. If m20 is sufficiently close to m02, the augmentation is performed. Th30 sets the thres-
hold on m30 before a 180 degree rotated augment vector is generated. The default values are
th20=O.O1 and th30=0.005.

BUGS
There is currently no boundary normalization. Legendre normalization works only on silhouette data
and cannot be called along with aspect normalization. Aspect normalization works only for silhouette
data. Silhouette data must be provided if grey-level data normalization is desired.

50

THRESHOLD(1) VISIX Users Manual THRESHOLD (1)

NAME
threshold - threshold an image to a binary value

SYNOPSIS
threshold if=infile of=outfile [th=tval]

DESCRIPTION
Threshold compares each pixel with the threshold value tval and sets the ouput true (255) if the pixel is
greater or equal to tval and false (0) otherwise. If tval is less than zero then the output is true if an
input pixel is less than or equal to (-tval) and false otherwise. Th default value for tval is 128.

AUTHOR
A. P. Reeves

51

FDGEN(IF) VISIX Users Manual FDGEN(IF)

NAME
fdgen - generate normalized fourier descriptors

SYNOPSIS
fdgen if=infile of=outfile [ft=filter-type fv=filter-value] [-s -r -t] [-x xf=xfile -y yf=yfile -o -p -J] [-i
xy=(no. XY points) el=(no. of input FDs)]

DESCRIPTION
fdgen reads a file containing X and Y coordinate vectors and computes a normalized Fourier descriptor
set for coefficients from -16 to +15 (complex) for each vector. The contour may be filtered to reduce
quantization errors. The filtering window is specified as a fraction of the total contour size by the
parameter filter-value; e.g. 0.04 specifies a 4% window. The parameter type determines the type of
filtering to be used:

1 -- rectangular
2 -- triangular
3 -- gaussian

The most frequently used values for filter and type are 0.04 and 1.

Other options are as follows:
-s no scale normalization
-r no rotation normalization
-t no translation normalization

-i inverse transform: takes Fourier descriptor input and produces
X and Y vector output

xy= number of X, Y pairs in inverse
el= number of descriptors to be read from 'infile' for inverse
-x generate raw file named x' of X data points or real

coefficients for plotting xf='xfile' same as -x but call
output file 'xfile'

-y, yf='yfile' same as -x and xf for Y data points
or imaginary coefficients

the following options apply for use with the x or y raw files:

-o reorder real and imag raw outputs to be -16,-15,..,-1,dc,
1....15

-p put input into raw outputs instead of output
-j join contour: duplicates first x,y value as last to close a

contour

SEE ALSO
ccdxy(l f

AUTHOR
Eric Rossin

BUGS
Written in FORTRAN. Input limited to 1024 data points.

52

XTRIM(IF) VISIX Users Manual XTRIM (IF)

NAME
xtrim - select elements from a PDS feature vector

SYNOPSIS
xtrim if=infile of=outfile lf=list [-r] [-m]

DESCRIPTION
Xtrim copies specified elements of the input vector to the output. In the case of multi-channel data, the
default is to remove the same elements from each channel. If the -m flag is set, then xtrim merges all
channels of a vector into a single channel and then copies specified elements of the merged vector to
the output vector. If the -r flag is set, then xtrim copies all elements except those specified to the output
vector. The parameter 6f specifies the file containing a list of element numbers. This file should be an
ASCII file containing integers in any order.

BUGS
Data cannot be variable length i.e. feature vector length must be specified in the main header. The user
may only specify 128 elements to be saved or removed at a time.

AUTHOR
R. J. Prokop

SEE ALSO
pds(5), mraw(If), mnorm(lf)

53

DISTRIBUTION LIST

Commander
Armament Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCAR-IMI-I (5)

SMCAR-FSF-RC (15)
Picatinny Arsenal, NJ 07806-5000

Commander
U.S. Army Armament, Munitions and Chemical Command
ATTN: AMSMC-GCL(D)
Picatinny Arsenal, NJ 07806-5000

Administrator
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria, VA 22304-6145

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: AMXSY-MP
Aberdeen Proving Ground, MD 21005-5066

Commander
Chemical Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCCR-MSI
Aberdeen Proving Ground, MD 21010-5423

Commander
Chemical Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCCR-RSP-A
Aberdeen Proving Ground, MD 21010-5423

Director
Ballistic Research Laboratory
ATTN: AMXBR-OD-ST
Aberdeen Proving Ground, MD 21005-5066

55

Chief
Benet Weapons Laboratory, CCAC
Armament Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemica' %ommand
ATTN: SMCAR-CCB-TL
Watervliet, NY 12189-5000

Commander
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCAR-ESP-L
Rock Island, IL 61299-6000

Director
U.S. Army TRADOC Systems Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002

56

